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Biocomplexity Institute's Approach:
TRANSDISCIPLINARY TEAM SCIENCE

Can informatics tools be developed to aid design and analysis of actionable policies
pertaining to complex STIO (social, informational, technical and organizational)
systems, €.g. sustainable habitats, pandemics, global conflicts?

* Undertake problems that cannot be solved by a single
faculty member or within the narrow boundaries of a
discipline

* Application-driven science and engineering: work on = "\if‘{-“;;%;,? 2
problems that are motivated by real-life applications =

* This paradigm produces fundamental advances

* These problems require soplisticated tools and diverse
intellectual resources, making them impossible to complex system
solve within the narrow confines of a single discipline
or by a few individuals
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Challenges of classic disease surveillance systems

Classic surveillance relies on fixed thresholds - a static problem approach

Credit: Developing influenza and respiratory syncytial virus activity
thresholds for syndromic surveillance in England
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Disease surveillance and response i1s a dynamic problem and depends on multiple factors:
« Surveillance effort: number of samples, resource allocation, test accuracy
« The disease ecology: pathogen’s infectiousness, host immunity, virus evolution

* Population’s structure: size and density, age distribution, activity patterns

G. Shmueli, H. Burkom, Statistical challenges facing early outbreak detection in biosurveillance. Technometrics 52, 39-51 (2010). e UNIVERSITYO]{VIRGINIA

J. D. Robishaw et al., Genomic surveillance to combat COVID-19: Challenges and opportunities. Lancet Microbe 2, e481-e484 (2021).
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Challenges of classic disease surveillance systems

The basic reproductive number

determines the outbreak’s

RO propagation speed and intensity

Disease prevalence * Diseases with high R, are detected earlier
0.14 but there 1s less time to respond.
0.12
0.10 : .
| * High Ry leads to lower marginal benefits of
008 increasing sampling size.
0.06
0.04
3%~ - -
0.02
0
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Genomic epidemiology

COVID-19 new reported cases in US  Elye New Nork Eimes Variants’ dominance time in the US*
1 |
800,000 cases " ey
600,000 E Delta
: within 7-13 weeks after detection
200,000 : . |\ Omicron

within 4-6 weeks after detection
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Feb. 2020 Sept. Apr. 2021 Nov. Jun. 2022 Jan. 2023

Delta variant Omicron variant
detected (March 2021) detected (Dec. 2021)

COVID-19 variants in North America

Frequency

22E(8QY)

Credit: nextstrain.org
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*ChanY, Irvine MA, Prystajecky N, Sbihi H, Taylor M, Joffres Y, et al. Emergence of SARS-CoV-2 Delta Variant and Effect of
Nonpharmaceutical Interventions, British Columbia, Canada. Emerg Infect Dis. 2023;29(10):1999-2007. https://doi.org/10.3201/eid2910.230055
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Multi-theory computational modeling framework

* Multi-variant disease dynamics
* Disease and genomic surveillance

* Interventions strategies
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Multi-theory computational modeling framework

PNAS A modeling framework integrating:

Coupled models of genomic surveillance and » multi-variant disease dynamics
evolving pandemics with applications for
timely public health interventions

Baltazar Espinoza &, Aniruddha Adiga, Srinivasan Venkatramanan, +14, and Madhav V. Marathe & Authors Info &

* disease and genomic surveillance

* Intervention strategies

Outbreak & variant detection
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Multi-theory computational modeling framework

PNAS A modeling framework integrating:

Coupled models of genomic surveillance and » multi-variant disease dynamics
evolving pandemics with applications for
timely public health interventions
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* disease and genomic surveillance

* Intervention strategies

Variant characterization

/ Detection time \

N
=)

/ Disease prevalence Variants prevalence \
1.0 1.0

-
o

g — Ro=24

Outbreak & variant detection fa e
Z — Ro=15
H

0.8 08 — . .
Proportion 15¢ variant

100 200 300 400 500 600
0.6 0.6

Proportion 27¢ variant l[: Importation time
0.4 * 0.4 P
0.2 M o.zA—_/\/\‘~ Cross-

infection
0 50 100 150 200 250 0 50 100 150 200 250

— 0 — 06
K Time Time /

0.2 — 0.8
[ Testing} [:fj . Sequencing]

04 — 1

150

50 — .

Days from importation

0 50 100 150 200 250 300
Importation time

[ > ] 1
O3 Cross- »  Relative j
[. infection j[%%infectiousness

-

il UNIVERSITYo/VIRGINIA

BIOCOMPLEXITY INSTITUTE



Multi-theory computational modeling framework

PNAS A modeling framework integrating:
Coupled models of genomic surveillance and » multi-variant disease dynamics
evolving pandemics with applications for . , ,
timely public health interventions * disease and genomic surveillance

Baltazar Espinoza &, Aniruddha Adiga, Srinivasan Venkatramanan, +14, and Madhav V. Marathe & Authors Info &

* Intervention strategies

Response scenarios

4 )

Minimize based on a given response length
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Key policy insights

Effective responses requires to characterize the genomic landscape

Depending on the target metric different intervention scenarios lead to

better outcomes

Robust surveillance systems allow to study multiple intervention scenarios

Sustained interventions suppress potential epidemic revival
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Key scientific insights

® Multi-variant competing dynamics inherently limit:

- Novel variant’s detection - Intervention effectiveness

® Novel variant’s detection could be delayed by:

- co-circulating variants - 1mportation time

® Cross-infection levels do not impact the detection

time of early imported variants
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Multi-variant model

[tsta'rta tz’mp]

Timp - novel variant’s importation time

New variant’s characteristics
similar to Delta importation
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Variant’s competing dynamics
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Disease and variants dynamics are highly sensitive to importation conditions:

* Importation time « Relative infectiousness e Cross-immunity
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Novel variant’s detection

* Imported variants: population mobility

* Emerging variants: evolutionary processes
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Novel variant’s detection trade-offs

B2/B1=1.6  Timp = 150

Timp - novel variant’s importation time

15t variant 5% > 27d yariant Td - novel variant’s detection time
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 the novel variant’s importation time i UNIVERSITY VIRGINIA
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Novel variant’s detection sensitivity

The detection time depends on the varying cross-infection and importation times
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* Detection times are not sensitive to cross-infection for ‘early’ importation times.

* Low cross-infection values delay detection times.
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Response after novel variant’s detection
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Response after novel variant’s detection
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Three epidemiological
metrics for interventions:

* Minimize the second variant's peak size

* Minimize the total peak size (both variants)

* Minimize the final epidemic size @ UNIVERSITY VIRGINIA
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Minimizing the second variant's peak size

The second variant’s peak size
shows non-linear dynamics
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* Effective responses requires to characterize the genomic landscape
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Response strength
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Minimizing the total disease prevalence
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® Early importation leads to minimize the second variant’s peak size

® Delayed importation leads to equalize both variant’s peak size
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Minimizing the final epidemic size
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Limitations of the work

Homogeneous mixing Susceptible-Infected-Recovered model

- Complex within host dynamics

- Spatial disease distribution

Surveillance 1s exclusively driven by infectious cases

- Geographical and temporal surveillance effort distribution and costs

- Hospitalization and mortality rates must be incorporated

Centralized simple interventions reducing the effective transmission

- Pulsated and pharmaceutical interventions

- Adaptive interventions

Potential viral evolution
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Key insights

® Tracking infection counts alone 1s not sufficient to assess public health interventions
® Characterization of the genomic landscape is critical to study complex disease dynamics

® Robust surveillance systems provide critical time for planning timely interventions

Ongoing work

* Incorporate adaptive human behavior

* Pathogen’s mutation framework
* Multi-variant dynamics

* Complex intervention strategies
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Thanks!

Comments and questions

* Model extensions to incorporate zoonotic and vector borne diseases

* Model extension to study potential trade-offs between surveillance and

responses across different regions

* How could machine learning leverage the proposed framework?

// VIRGINIA
DEPARTMENT
OF HEALTH

National Institutes
of Health

NN
’ 7
In%%

il UNIVERSITYo/VIRGINIA

BIOCOMPLEXITY INSTITUTE



