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A Digital Twin of an Evolving Pandemic for Genomic Epidemiology

Biocomplexity Institute, University of Virginia

1 Introduction

A synthetic pandemic data set is an extension of a base digital twin. The base digital twin of a particular
population, e.g., Virginia, is a synthetic representation of the population. It consists of synthetic individuals
with demographic, geographic, and socioeconomic attributes, and their activities and mobility with spatio-
temporal labels. On top of it, we can add additional layers of synthetic data to enable the study of various
problems and applications. For example, we have already added a social contact network layer to represent
the physical proximity of individuals when they visit and stay at the same location at the same time. This
contact network data allows us to model infectious disease dynamics in the population such as influenza,
Ebola, and COVID-19. Such additional layers are attached to a particular version of the base digital twin
and become part of the digital twin.

In this work, we add another data layer to the digital twin using an agent-based epidemiological model,
to represent an infectious disease outbreak. We use COVID-19 as a specific example of an infectious disease
here; extensions to other airborne viral diseases can be undertaken by extending these basic techniques. We
provide several sets of pandemic data to allow the study of various problems such as bio-surveillance, optimal
resource allocation, intervention assessment, and cascade reconstruction to name a few. All data sets are
based on and are extensions of our v1.9.0 digital twin of Virginia, which consists of a synthetic population of
Virginia with demographic, geographic, and socio-economic attributes of each individual and each household,
and a synthetic contact network with labeled nodes representing synthetic individuals and labeled edges
representing physical proximity between individuals enabling disease spread. The synthetic outbreak data
represents instances of realistic epidemic outbreak over the synthetic social contact network based on realistic
COVID-19 models of within-host disease progression and between-host disease transmission.

In these synthetic pandemic data sets, we model different scenarios corresponding to different stages of
the COVID-19 pandemic. Each data set highlights specific features. The first set models the period when the
Delta variant emerged and co-circulated with the Alpha variant, and highlights between-variant competition
and vaccine hesitancy; the second set models the period when a large percentage of the population had been
infected and/or vaccinated and had obtained some level of immunity, and features waning of the natural and
vaccinal immunity in the population; the third set models the period when many new variants, including
Omicron, emerged and many people had been reinfected (some more than once) and highlights immune
escape and the endemicity of the COVID-19 pandemic. These scenarios are motivated by the scenario model
hub (SMH) efforts [1, 3, 4, 2] in which we have been participating since 2021 [12].

2 Base Data Set: Digital Twin of Virginia

Our group has been developing methods for creating synthetic population data sets for over 25 years [25,
5, 19, 15]. In our efforts to support the federal government and the Virginia Health Department in their
response to the COVID-19 pandemic, we created a synthetic social contact network of the state of Virginia, as
well as other parts of the United States (US). In the network, nodes represent individuals, and edges capture
physical proximity. Using these networks, we created epidemic simulations based on real-world outbreak
information on vaccinations, non-pharmaceutical interventions, and other relevant data. The output of one
simulation is a set of synthetic individuals who are infected over the course of the disease transmission. The
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synthetic data (also referred to as a digital twin in recent literature) provides a realistic account of how the
disease spreads through the population in time and space.

A synthetic agent (e.g., person) is assigned states and interactions that make it statistically consistent
with members of the (real) population without necessarily matching the characteristics of any specific (real)
person. A synthetic population represents a set of synthetic agents (e.g., people) that share common geo-
graphic or social characteristics (e.g., people in a rural or urban region, individuals from a specific state).

These populations and networks are formed by collecting a large and diverse set of publicly and/or
commercially available data sets. These data sets include census, land use, mobility, activity, behavioral and
transportation surveys and building maps. The data sets have been integrated in a first principles manner to
construct these synthetic populations. They have been used for highly accurate, national level, agent-based
modeling tasks [8].

The synthetic data is formed by starting with the empirical distribution of particular attributes within an
area (for example, the number of people per household, age, or income), then iteratively forming a population
that matches those distributions while also preserving observed associations between those attributes. We
apply a similar process to mobility data. This process means that there is no direct correspondence between
any real person and any single synthetic agent within our synthetic population.

Our methodology ensures that privacy is maintained. We apply our synthesizing process to data that is
already public, and, in the case of the census, has already had privacy-enhancing methods applied to it [18].
In the case of the 2020 census, the data that was released to the public had differential privacy applied to it
[31], and our use corresponds to post-processing, which does not have any additional impact on privacy [14].
Furthermore, when we do use sources that have not been subjected to differential privacy processing, we rely
on data sources that are already public. Any data an attacker might attempt to derive from the synthetic
data could be much more easily obtained by looking at the sources we used to construct the data in the first
place. Therefore, our digital twin and synthetic pandemic data sets preserve privacy.

The base synthetic population data of Virginia which we provide consists of synthetic individuals, each
of whom is assigned an age, a gender, a household and its home location, visited locations, and the activities
performed at those locations. The synthetic network data of Virginia we provide consists of a person-location
graph (also called an activity-location assignment graph) and a person-person contact network that is derived
from the person-location graph based on which individuals visit the same location at the same time.

2.1 Methodology to Generate Synthetic Population and Network of Virginia

A synthetic population of a region may be regarded as a digital twin of the real population of that region. In
this section, we provide a compact summary of the models and methodologies behind constructing synthetic
populations and contact networks. See [23] for additional details. Our work builds on earlier techniques
using a first principles approach for constructing synthetic populations [16, 17, 6].

Figure 1: High-level sequence of models and steps used for constructing synthetic populations.

To construct a population for a geographic region R (e.g., Virginia), we first choose a collection of person
attributes from a set D (e.g., age and gender) and a set TA of activity types (e.g., Home, Work, Shopping,
Other, School, College, and Religion). The precise choices of D and TA are guided by the particular
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Figure 2: A high-level illustration showing the manner in which data is integrated in the modeling and
construction of synthetic populations. The members of the populations will be equipped with a range
of demographic attributes (details will depend on available data and application purpose), will have an
associated contact network (denoted by GP ) as shown in the middle, and a person-location graph (denoted
by GPL) as shown on the right.

scenarios or analyses the population will serve. At a high level (see Figure 2), we: (i) construct virtual
people and places, (ii) assign activity sequences to people, (iii) assign each activity a location and time of
visit, and from this, we derive (iv) a contact network using co-occupancy and a contact model to infer edges.
A high-level workflow for this process is illustrated in Figure 1 where the contact network is illustrated in
the middle. The construction factors into a detailed sequence of steps which can be outlined as follows.

Step 1: Person and Household construction. Using iterative proportional fitting (IPF) [7, 13], the base
population model constructs a set of individual persons P where each person is assigned demographic
attributes from D. By design, this ensures that P matches the statistical distributions of the Public Use
Microdata Sample (PUMS) data from the US Census [29], which is one of the input data sets for the model.
Additionally, this model partitions P into a set H of households. Here, the term household encompasses the
traditional notion of “family” as well as other subsets of individuals residing in the same dwelling unit (e.g.,
dormitories, apartments, army barracks, or prisons).

Step 2: Activity sequence assignment. In this step, each individual p ∈ P is assigned a week-long
activity sequence α(p) = (ai,p)i where each activity ai,p has a start time, a duration, and an activity type
from TA. Data sources used as input for this step include the National Household Travel Survey (NHTS) [32],
the American Time Use Survey (ATUS) [30] and the Multinational Time Use Study (MTUS) [27]. We
write α : P −→ A for the mapping assigned to each person. For this construction, we use Fitted Values
Matching (FVM) for adults [21], and Classification And Regression Tree (CART) for children (see, e.g.,[9]).

Step 3: Location construction. The location construction model generates a set of spatially embedded
locations L partitioned into residence locations where households live, and activity locations where people
conduct their non-Home activities. This construction is highly granular, and is based on several data sources,
including the Microsoft US Building data [22], HERE/NAVTEQ [20] for points-of-interest (POIs) and land-
use classifications, and the National Center for Education Statistics (NCES) [24] for public schools.

Step 4: Activity location assignment. For each person p ∈ P, the activity location assignment model
assigns a location ℓi = ℓ(ai) to each of their activities ai. We denote the sequence of locations visited by p
as λp = (ℓi)i,p. The location assignment model uses the American Community Survey (ACS) commute flow
data [28] to assign a target county c for each Work activity, and a particular location randomly within c based
on attractor weights assigned to each location in c. School activity locations are assigned using NCES data,
while remaining activities are anchored near home and work locations. The activity location assignment
induces the bipartite people location graph GPL with vertex sets V1 = P and V2 = L (the set of locations)
and labeled edges all (p, ℓ) for which p visits ℓ. The label includes the activity type, the start time for the
visit, and the duration of the visit; for more details, see the right side of Figure 2.

3



Step 5: Contact network generation. In this step, the contact network model uses the people-location
graph GPL to first derive the co-location graph Gmax with vertex set P and edges all e = (p, p′) for people p
and p′ that are simultaneously present at the same location. Applying sub-location contact modeling at each
location, we determine which of the edges of Gmax will be retained to form the contact network G, which is
also referred to as the person-person contact network and denoted by GP (rather than simply G) to make
this explicit. In this work, we use a random graph model referred to as the Min/Max/alpha model at each
location to obtain GP . Let ℓ be a location and let N = Nℓ denote the maximal number of simultaneous
visits to ℓ. We define the function pℓ : N \ {0, 1} −→ [0, 1] as

pℓ(N) = min
{
1,
[
Min + (Max−Min)(1− e−N/α)

]
/[N − 1]

}
, (1)

where Min < Max are non-negative numbers and α > 0. Given p = pℓ(N), one samples from this random
graph model in the same manner as for the standard model Gn,p by independently applying to each edge e
at random the probability p corresponding to the location ℓ where e ∈ Gmax originates. Thus, the parame-
ters Min and Max bound the degree of each vertex locally at ℓ (in expectation) at the beginning of each visit;
note, however, that the degree of person p in the resulting graph G is the accumulation of degrees across
their trajectory to locations visited while executing their activity sequence. Thus, the choices of Min, Max
and α will induce the degree of each vertex in a bottom-up manner; see [23] for full details.

Remark. The Virginia networks GP feature contacts and edges throughout an entire week. To support
this challenge, we extract sub-graphs, e.g., G1, from GP to represent the contact network on the particular
days.

3 Outbreak Data Sets: Synthetic Pandemic in Virginia

We have highly granular disease models which can be applied to the digital twin of Virginia. A disease model
is a probabilistic model of disease progression, specifying the likelihood of transitioning between disease states
based on each synthetic agent’s attributes. We determine the likelihood of infection given exposure based
on a number of factors including social distancing and vaccination status, and can further model whether a
specific infection is asymptomatic, or the likelihood that the infection will result in a severe, reported case.
Using such a disease model, we generate synthetic outbreak data that reflects how an individual’s disease
state evolves over time.

3.1 Synthetic Pandemic Data Set 1: An Outbreak with Co-circulating Variants

This data set models the scenario corresponding to the summer of 2021, when a new variant of concern (VOC),
Delta, emerged and quickly became dominant in Virginia due to its much higher transmissibility than the
circulating variant Alpha. From the end of 2020, vaccines began to be administered to the population, first
prioritizing seniors and critical workers, then starting to cover adults. Part of the population had developed
immunity from infections by the wild type and the Alpha variant, as well as from early vaccines, including
Johnson&Johnson, Pfizer, and Moderna. However, the fraction of the population being infected by COVID-
19 was still small, and due to vaccine hesitancy, vaccination coverage was still low by the time the Delta
variant emerged and was imported into Virginia. The provided data covers an outbreak of about six months,
corresponding to the period between the emergence of the Delta variant and the emergence of the Omicron
variant.

What can this data set be used for? In this data set we model two variants: an existing variant is
seeded on May 5, mainly by the cases already in the population; and a new variant is seeded on May 29, by
importation. After the emergence of the new variant, the susceptible people of the population are competed
for by both variants but the new one is 60% more transmissible than the existing one. The dynamics of the
competition varies among different sub-populations and depends on the network structure and the immunity
distributions in the contacts of the infectious people of different variants. For example, Figure 3 shows the
prevalence of two variants among new infections over time by age group. The new variant becomes dominant
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in younger age groups (below 18) about three months after its emergence, but never becomes dominant in
older age groups (18+). This data set can be used for studies and analyses related to co-circulating variants.
For example, it can be used to test and evaluate surveillance models for detecting an emerging variant and
to study budget constrained optimal targeted surveillance problem.

Figure 3: Distribution of new infections between two variants over time. The new variant becomes dominant in
preschoolers (0-4) and school-age (5-17) in early September. But it never becomes dominant among the older age
groups.

3.1.1 Scenario modeling

This data set is generated by a simulation that models a hypothetical scenario, where a new variant 60%
more transmissible than the circulating variant emerged in Virginia in May 2021. The prior immunity in the
population at the beginning of the outbreak period is modeled based on the confirmed cases in Virginia and
actual age-stratified vaccination in Virginia prior to May 2021. As mentioned earlier, the scenarios described
below are motivated by the scenario model hub (SMH) efforts [1, 3, 4, 2]. We have been participating in the
hub activities since its inception in 2021 [12].

Disease model. We use an age-stratified COVID-19 disease model parameterized based on [10], and ex-
tended to model two vaccines and two variants. The disease model includes the following states for each
age group: S (susceptible), E (exposed), Ipresymp (presymptomatically infectious), Isymp (symptomati-
cally infectious), Iasymp (asymptomatically infectious), rMedAttend (medically attended to be recovered),
hMedAttend (medically attended to be hospitalized), dMedAttend (medically attended to be dead), Hosp
(hospitalized to be recovered), dHosp (hospitalized to be dead), Vent (ventilated to be recovered), dVent
(ventilated to be dead), Death (dead), R (recovered). We extend S state for two vaccines: vaxinitialS
(susceptible with initial vaccine) vaxboosterS (susceptible with booster vaccine). An individual vaccinated
by the initial vaccine is 90% less susceptible than naively susceptible (90% efficacy against infection). An
individual vaccinated by the booster vaccine is 80% less susceptible than naively susceptible (80% efficacy
against infection). We also extend the three infectious states for two variants: the existing variant and the
new variant. An individual infectious with the new variant is 60% more infectious than with the existing
variant. The state transition parameters are presented in Table 1. Note that the extended states have the
same transition parameter as their base states thus are omitted from the table.

Initializations. The outbreak is modeled from May 4, 2021 (day 0). It is initialized based on the surveillance
data on confirmed cases at county level in Virginia [26] and age specific vaccine administration data of
Virginia [11] up to May 4, 2021. From these data sets we derive the distribution of the Virginia population
among different compartments: susceptible, vaccinated with initial vaccine, actively infected, and recovered
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Age group
Progression Attribute 0-4 5-17 18-49 50-64 65+

E → Iasymp
prob 0.35
dt N(5, 1)

Iasymp → R
prob 1
dt N(5, 1)

E → Ipresymp
prob 0.65
dt 3

Ipresymp → Isymp
prob 1
dt 2

Isymp → rMedAttend
prob 0.9582 0.9882 0.9582 0.906 0.754
dt discrete(1:0.175, 2:0.175, 3:0.1, 4:0.1, 5:0.1, 6:0.1, 7:0.1, 8:0.05, 9:0.05, 10:0.05)

rMedAttend → R
prob 1
dt N(5, 1)

Isymp → dMedAttend
prob 0.0018 0.0018 0.0018 0.009 0.051
dt-fixed 2

dMedAttend → dHosp
prob 0.95
dt-fixed 2

dHosp → dVent
prob 0.06 0.06 0.06 0.15 0.225
dt 2

dVent → Death
prob 1
dt 3

dHosp → Death
prob 0.94 0.94 0.94 0.85 0.775
dt 6

dMedAttend → Death
prob 0.05
dt 8

Isymp → hMedAttend
prob 0.04 0.01 0.04 0.085 0.195
dt 1

hMedAttend → Hosp
prob 1
dt N(5, 4.6) N(5, 4.6) N(5, 4.6) N(5.3, 5.2) N(4.2, 5.2)

Hosp → R
prob 0.94 0.94 0.94 0.85 0.775
dt N(3.1, 3.7) N(3.1, 3.7) N(3.1, 3.7) N(7.8, 6.3) N(6.5, 4.9)

Hosp → Vent
prob 0.06 0.06 0.06 0.15 0.225
dt N(1, 0.2)

Vent → R
prob 1
dt N(2.1, 3.7) N(2.1, 3.7) N(2.1, 3.7) N(6.8, 6.3) N(5.5, 4.9)

Table 1: Disease progression parameters. One value per line applies to all age groups. Abbreviations: prob:
probability, dt: dwell time, N(·, ·): normal distribution, E: exposed, Iasymp: asymptomatically infectious, Ipresymp:
presymptomatically infectious, Isymp: symptomatically infectious, rMedAttend: medically attended to be recovered,
hMedAttend: medically attended to be hospitalized, dMedAttend: medically attended to be dead, Hosp: hospitalized
to be recovered, dHosp: hospitalized to be dead, Vent: ventilated to be recovered, dVent: ventilated to be dead,
Death: dead, R: recovered.
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Figure 4: Disease state transition diagram. It has the same structure but different parameterizations (see Table 1) for
different age groups. The dashed arrows represent transitions that occur only with external causes (e.g. vaccination
or contact with infectious people). The solid arrows represent within-host progressions.

from infection. We use this distribution to assign individuals in our Virginia digital twin to one of these
states.

Vaccination with hesitancy. This outbreak models two vaccines: the initial vaccine corresponds to the
early two-dose regime of Pfizer and Moderna (and one-dose regime of Johnson&Johnson); the booster vaccine
corresponds to the regime introduced in late 2021. The initial vaccine when fully administered provides 90%
VE (vaccine efficacy) against infection. The booster provides 80% VE.

Non-pharmaceutical interventions. After vaccines became available, many of the early stage social
distancing measures were relaxed. We model the following non-pharmaceutical interventions.

• School closure: throughout the modeling period, 25% compliance, compliant individuals drop all in-
school contacts.

• Mask wearing: throughout the modeling period, 25% compliance, compliant individuals have their
transmission risks reduced by 60%.

• Generic social distancing: throughout the modeling period, 15% of all individuals, compliant individuals
drop all non-essential activities (shop, religion, other).

• Voluntary home isolation: 14 days from 2 days after becoming pre-symptomatic, 75% of symptomatic
cases, compliant individuals drop all non-home activities and contacts.

3.1.2 Highlighted features in the data

In this data set we highlight prior immunity, vaccine prioritization and hesitancy, relaxed NPIs, and com-
peting variants. In both the version delivered to NSF and that to CDC, we include transmissions data, which
represent transmission trees as subgraphs of the underlying contact network. It can be used to study e.g.
surveillance of an emerging variant. The transmission data of each outbreak consists of a collection of trees,
rooted at nodes corresponding to seeded infections (importations in real world). In Figure 5 we show an
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example of such trees from an outbreak and the fragment of the contact network that includes the tree nodes
and their neighboring nodes. In the delivered data set, we also include transitions data, which records state
transition events that have occurred to individuals during the outbreak. The transitions data can be used
to study population immunity dynamics at individual level.

(a) A transmission tree from an outbreak. Nodes are la-
beled by person IDs. Arrows show transmission direction
and are labeled by the simulation day the transmissions
occur.

(b) Subgraph of contact network corresponding to
the tree nodes. It includes the tree nodes (labeled
by person IDs) and their neighboring nodes (not
labeled for clarity).

Figure 5: Illustration of transmissions data. On the left is one of the transmission trees from an outbreak, which is
a random realization of the stochastic diffusion process starting from person with ID 993377 and along the edges of
the contact network, of which a small fragment related to the tree nodes is shown on the right.

3.1.3 Data schema

The synthetic population and contact network data sets of Virginia, as well as the synthetic outbreak data
sets are delivered in a series of comma-separated-value (CSV) files as described in Table 2. Each file has
data for a particular component (e.g., person, household, etc.) of the overall population schema. The fields
contained in each file, along with their descriptions, are provided in tables 3 – 10 and figure 6 shows the
relationships between different files.

4 Near term applications to Genomics

The interplay between pathogen evolution and societal dynamics presents a significant challenge for genomic
epidemiology. Understanding how factors like demographics, mobility patterns, and public health interven-
tions influence the spread and evolution of diseases is crucial for effective surveillance and control. The
ability to generate realistic, yet completely synthetic, outbreak data can be further enhanced by introducing
evolutionary processes and the generation of synthetic pathogen genomes. Our system, which simulates
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Data Component Description
Person Each row represents one synthetic individual in the population, including

their age, gender, and the household to which they belong.
Household Each row represents one synthetic household in the population, including

its residence location, administrative regions, and the number of household
members.

Residence Locations Each row represents a residence location (e.g., where a household may
reside.)

Activity Locations Each row represents a non-residence location where people may go over the
course of the day (e.g., work, school, shopping, etc.)

Activity Location Assign-
ment

Each row maps an individual to an activity and the location where that
activity took place. An individual will likely have multiple activity locations
over the course of a day.

Population Network Indicates when and where two people came in contact, and for how long.
Transmissions Infecting and infected IDs, day, and virus variant of each transmission.
Transitions The person ID whose state changes, day, and the state after the change of

each state transition.

Table 2: Various components of the synthetic population dataset. The naming convention is:
{region} {component} ver {major} {minor}.csv, where {major} and {minor} indicate the version of the popula-
tion and component indicates person, household, etc.

Field Description
pid Person ID: A unique integer identifying a person
hid Household ID: An integer identifying a household as defined in the Household file
person number The sequence identifier related to the indicated person’s position within the house-

hold. A household with 3 people would have person numbers 1, 2, and 3.
age Age of person
sex Gender of person

Table 3: Person file

Field Description
hid Household ID: A unique integer identifying a household
rlid Residence location ID
admin1 For UK, this is the ADCW ID for the admin1 region; for Virginia, USA, this is

the state FIPS code (51)
admin2 For UK, admin2 is the same as admin1 because ADCW does not provide admin2

level for the UK. For Virginia, USA, this is the county FIPS code
hh size Household Size: Number of persons in a household

Table 4: Household file

Field Description
rlid Residence Location ID: A unique integer identifying the residence location.
longitude Longitude of the location
latitude Latitude of the location
admin1 See household file description
admin2 See household file description

Table 5: Residence Locations file
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Field Description
alid Activity Location ID: Unique integer identifying the location where non-HOME

activities can take place
longitude Longitude of the location
latitude Latitude of the location
admin1 See household file description
admin2 See household file description
work Does the location support work activities? (Value is 0 or 1)
shopping Does the location support shopping activities? (Value is 0 or 1)
school Does the location support school activities? (Value is 0 or 1)
other Does the location support other activities? (Value is 0 or 1)
college Does the location support college activities? (Value is 0 or 1)
religion Does the location support religion activities? (Value is 0 or 1)

Table 6: Activity Locations file

Field Description
hid Household ID of the person
pid Person ID of the person
activity number Activity Number: Number of the activity in the activity sequence to which it

belongs
activity type Activity Type: Enumerations used for encoding activity types. 1: Home, 2: Work,

3: Shopping, 4: Other, 5: School, 6: College, 7: Religion
start time Start time of the activity in seconds since midnight Sunday/Monday
duration Duration of the activity in seconds
lid Location ID of the location where the activity takes place (rlid or alid)

Table 7: Activity Location Assignment file

Field Description
pid1 Person ID 1 of this edge
pid2 Person ID 2 of this edge
lid Location ID of the location where the contact takes place (rlid or alid)
start time Start time of the contact between Person ID 1 and Person ID 2 measured in seconds

since midnight of Sunday/Monday
duration Duration of the contact measured in seconds
activity1 Activity type of Person ID 1 at time of contact, see activity type in activity location

assignment file description
activity2 Activity type of Person ID 2 at time of contact, see activity type in activity location

assignment file description

Table 8: Population (Contact) Network file

Field Description
day Simulation day of the transmission
pid ID of the infected person
variant Virus variant being transmitted (1: existing variant; 2: new variant)
contact pid ID of the infecting person

Table 9: Transmissions
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Field Description
day Simulation day of the transition
pid ID of the transitioning person
disease state Disease state to which the person transitions

Table 10: Transitions

Figure 6: Data structure diagram.
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outbreaks on a digital twin of the population, provides a powerful tool for benchmarking genomic epidemi-
ology applications. This approach allows us to explore the combined effects of evolutionary and spreading
processes within a realistic societal framework, offering insight into how genomic data can be leveraged for
public health analysis.

4.1 Specific applications in Genomic Epidemiology

• Understanding the Informational Capacity of Pathogen Genomics: By embedding genomic
data within our simulations, we can study the ”informational capacity” of pathogen genetic material
tuned specifically to the rate and type of change in a specific pathogen, to explore how effectively
genomic data can distinguish:

– Infection cascades: Identifying transmission chains and superspreader events.

– Demographics: Understanding how disease spread varies across age groups, socioeconomic
strata, and other demographic factors.

– Behavioral Groups: Discerning transmission patterns associated with specific behaviors and
risk factors.

• Epidemiological enhancement: Digital similars in this context have great potential for capturing
a high level of detail and providing situational awareness when combined with real world surveillance

– Communication and Situational Awareness: Creating representations of outbreaks con-
strained by real world genomic surveillance for analysis and communication purposes. And further,
leveraging the digital twin as container for privacy preservation and modulating representation of
PHI in an epi context.

– Education: Creating realistic synthetic data sets with matched, detailed demographics and
genomic sequences provide the necessary input for demonstrating the full feature set of a range
of phylodynamic and bioinformatic tools without an inherent PHI concern.

• Benchmarking Genomic Epidemiology Applications: The system provides a controlled envi-
ronment to develop, test, and benchmark a range of applications, including:

– Cascade Reconstruction: Evaluating the performance of algorithms that reconstruct trans-
mission chains from genomic data, especially under realistic conditions of incomplete sampling
and backfill.

– Surveillance Sensitivity Analysis: Generating tailored data sets that mimic real-world surveil-
lance data, allowing researchers to test new analytical methods against features both explicit and
emergent.

• Exploring Specific Research Questions: The flexibility of our system allows for in-depth investi-
gations of key questions in genomic epidemiology:

– Evolutionary Modeling: Simulating pathogen evolution at a transactional (person-to-person)
level to understand how micro-level mutational forces translate into macro-level genomic patterns
observed in outbreaks.

– Realistic Importation Scenarios: Modeling diverse importation scenarios to understand how
imported cases influence outbreak dynamics and genomic diversity.

– Impact of Sampling Strategies: Examining how different sampling frames and biases (e.g.,
testing availability, symptom-based testing) affect the observed genomic data and downstream
analyses.

– Ablation Studies: Systematically removing or altering specific data components (e.g., mobility
data, intervention data) to quantify their impact on genomic inferences and understand the value
of different data sources for genomic epidemiology.
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By providing a realistic, yet completely synthetic, testing ground, our system enables a deeper understanding
of how pathogen genomics interacts with societal factors. This will be crucial for developing robust genomic
surveillance systems, designing effective interventions, and ultimately strengthening our ability to combat
infectious diseases.
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